Registration Acceptance Conditions | (1) To be eligible for application to the doctoral programme, the candidates should hold an undergraduate (Bachelor’s) or a graduate (Master’s) degree, a ten year medicine, dentistry and veterinary faculty degree excepting the preparatory year, pharmeceutics and science faculty undergraduate or graduate degree or a laboratory field proficiency based on Ministry of Health regulations. The applicants should also hold a minimum of 55 in the Selection Examination for Academic Personnel and Graduate Studies (ALES) in the field they apply to. Instead of ALES score, candidates may choose to submit the scores of other internationally accepted examinations whose validity and equivalency are determined by the University Senate. For those who hold an undergraduate degree, a minimum of 70 in ALES in the field they apply to is required.
(2) The final admission score for PhD applications is determined as the total sum of %10 of grade point average (GPA), %50 of the ALES standard grade, %40 of the grade received in the entrance examination, which is conducted by a jury determined by the Institute administration, for those with a graduate degree. For an applicant to be admitted, the grade should be a minimum of 70. The final grades are arranged from the highest to the lowest score and a number of applicants as per the announcement is admitted. However, in PhD admissions, a minimum of 55 in ÜDS or an equivalent in an examination accepted by the Inter-University Council is required; for foreign applicants, a minimum of 55 in ÜDS of one of English, French or German languages (which should be different from their mother language) or an equivalent in an examination accepted by the Inter-University Council is required. The University Senate has the right to increase these minimum requirements.
|
Teaching Methods | Teaching Methods
Teaching methods are determined so as to improve skills, such as teaching-learning strategies, self-discipline, life-long learning, observation, sharing knowledge, presentation, critical thinking, teamwork, effective use of informatics.
Moreover, the choice of teaching methods pays heed to supporting students with different skills. The teaching methods used in the program are listed below*:
TEACHING METHODS*
|
LEARNING ACTIVITIES
|
MEANS
|
Course
|
Listening and interpretation
|
Standard classroom technologies, multimedia devices, projector, computer, overhead projector
|
Discussion Course
|
Listening and interpretation, observation/situation handling, critical thinking, question development
|
Standard classroom technologies, multimedia devices, projector, computer, overhead projector
|
Special Support / Structural Examples
|
Special skills planned beforehand
|
|
Playing a Role / Drama
|
Special skills planned beforehand
|
Standard classroom technologies, special equipment
|
Problem Solving
|
Special skills planned beforehand
|
|
Case Study
|
Special skills planned beforehand
|
|
Brainstorming
|
Listening and interpretation, observation/situation handling, critical thinking, question development, team work
|
Standard classroom technologies, multimedia devices, projector, computer, overhead projector
|
Small Group Discussion
|
Listening and interpretation, observation/situation handling, critical thinking, question development
|
Standard classroom technologies, multimedia devices, projector, computer, overhead projector
|
Presentation
|
Listening and interpretation, observation/situation handling
|
Real or virtual environment suitable for observation
|
Simulation
|
Listening and interpretation, observation/situation handling, informatics skills
|
Real or virtual environment suitable for observation
|
Seminar
|
Research – lifelong learning, writing, reading, informatics, listening and interpretation, management skills
|
Standard classroom technologies, multimedia devices, projector, computer, overhead projector, special equipment
|
Group Study
|
Research – lifelong learning, writing, reading, informatics, critical thinking, question development, management skills, team work
|
|
Field / Land Study
|
Observation / situation handling, research – lifelong learning, writing, reading
|
|
Laboratory
|
Observation/situation handling, informatics, management skills, team work
|
Special equipment
|
Homework
|
Research – lifelong learning, writing, reading, Informatics
|
Internet database, library database, e-mail
|
Oral Exam
|
|
|
Survey and Questionnaire Study
|
Research – lifelong learning, writing, reading
|
|
Panel
|
Listening and interpretation, observation/situation handling
|
Standard classroom technologies, multimedia devices, projector, computer, overhead projector, special equipment
|
Guest Speaker
|
Listening and interpretation, observation/situation handling
|
Standard classroom technologies, multimedia devices, projector, computer, overhead projector, special equipment
|
Student Club Activity / Projects
|
Observation/situation handling, critical thinking, question development, team work, research – lifelong learning, writing, reading, management skills, special skills planned beforehand
|
|
*One or more of the listed methods can be used depending on the specificity of the course.
|
Program Outcomes
1-Having ability to promoting and commending of technological, social and cultural advances with the academic and professional context at information based societies 2-Ability to implementing their knowledge and problem solving skills, which they were gained about their field, on inter-disciplinary studies 3-Ability to developing solution techniques that starting from editing problem by oneself, solving problem, implementing of results and presenting verbal and written 4-Ability to contributing science with expanding knowledge by publishing at least one part of comprehensive study ,which is making scientific innovation, developing new scientific method or implementing a known method, at national and international refereed journals 5-Ability to learning and understanding latest information about biosystem engineering by systematic approach and beside that ability to gain high level proficiency on studies, methods and talents related to this field 6-Having proficiency to expanding and deepening knowledge, accessing information by making scientific researches, evaluating, interpreting and implementing of data, at the field that based on biosystem engineering bachelor degree 7-Ability to evaluating performance of strategic working groups and contributing to their developments 8-Ability to transferring results and stages of studies to related field or different fields, clearly and systematically in written or oral ways 9-Having ability of communication skills for both verbal and written at least for one foreign language 10-Having ability to supervising, teaching and controlling scientific and ethical values at the stages of obtaining, interpreting and announcing data about their research field 11-Having sufficient hardware and software knowledge which are required for related to proficiency and also ability to using and developing informatics and communication technologies 12-Ability to finding solution and developing new strategic approaches by taking responsibility for unpredictable complex situations at professional activities and projects 13-Ability to completing information by using scientific methods on limited or incomplete data and ability to implementing this information with scientific, social and ethical responsibilities 14-Achieving to advanced written and verbal communication skills at both mother language and at one foreign language to contacting with general society, groups in their proficiency field and other wider scientific groups 15-Having proficiency to making critical analysis, synthesis and evaluation of new and complex ideas |